Adaptively Secure UC Constant Round Multi-Party Computation Protocols
نویسندگان
چکیده
We present a universally composable multiparty computation protocol that is adaptively secure against corruption of n − 1 of the n players. The protocol has a constant number of rounds and communication complexity that depends only on the number of inputs and outputs (and not on the size of the circuit to be computed securely). Such protocols were already known for honest majority. However, adaptive security and constant round was known to be impossible in the stand-alone model and with black-box proofs of security. Here, we solve the problem in the UC model using a set-up assumption. Our protocol is secure assuming LWE is hard and achieved by building a special type of crypto system we call equivocal FHE from LWE. We also build adaptively secure and constant round UC commitment and zero-knowledge proofs (of knowledge) based on LWE.
منابع مشابه
Adaptively Secure Multi-Party Computation from LWE (via Equivocal FHE)
Adaptively secure Multi-Party Computation (MPC) is an essential and fundamental notion in cryptography. In this work, we construct Universally Composable (UC) MPC protocols that are adaptively secure against all-but-one corruptions based on LWE. Our protocols have a constant number of rounds and communication complexity dependant only on the length of the inputs and outputs (it is independent o...
متن کاملOn Adaptively Secure Multiparty Computation with a Short CRS
In the setting of multiparty computation, a set of mutually distrusting parties wish to securely compute a joint function of their private inputs. A protocol is adaptively secure if honest parties might get corrupted after the protocol has started. Recently (TCC 2015) three constant-round adaptively secure protocols were presented [CGP15, DKR15, GP15]. All three constructions assume that the pa...
متن کاملTwo-Round Adaptively Secure MPC from Indistinguishability Obfuscation
Adaptively secure Multi-Party Computation (MPC) first studied by Canetti, Feige, Goldreich, and Naor in 1996, is a fundamental notion in cryptography. Adaptive security is particularly hard to achieve in settings where arbitrary number of parties can be corrupted and honest parties are not trusted to properly erase their internal state. We did not know how to realize constant round protocols fo...
متن کاملImproved Non-committing Encryption with Applications to Adaptively Secure Protocols
We present a new construction of non-committing encryption schemes. Unlike the previous constructions of Canetti et al. (STOC ’96) and of Damgård and Nielsen (Crypto ’00), our construction achieves all of the following properties: – Optimal round complexity. Our encryption scheme is a 2-round protocol, matching the round complexity of Canetti et al. and improving upon that in Damgård and Nielse...
متن کاملAdaptively Secure Multi-Party Computation with Dishonest Majority
Adaptively secure multiparty computation is an essential and fundamental notion in cryptography. In this work we focus on the basic question of constructing a multiparty computation protocol secure against a malicious, adaptive adversary in the stand-alone setting without assuming an honest majority, in the plain model. It has been believed that this question can be resolved by composing known ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014